
An Automated Continuous-Flow Platform for the Estimation of
Multistep Reaction Kinetics
Brandon J. Reizman and Klavs F. Jensen*

Department of Chemical Engineering, Novartis Center for Continuous Manufacturing, Massachusetts Institute of Technology, Room
66-350, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

*S Supporting Information

ABSTRACT: Automated continuous flow systems coupled with online analysis and feedback have been previously
demonstrated to model and optimize chemical syntheses with little a priori reaction information. However, these methods
have yet to address the challenge of modeling and optimizing for product yield or selectivity in a multistep reaction network,
where low selectivity toward desired product formation can be encountered. Here we demonstrate an automated system capable
of rapidly estimating accurate kinetic parameters for a given reaction network using maximum likelihood estimation and a D-
optimal design of experiments. The network studied is the series−parallel nucleophilic aromatic substitution of morpholine onto
2,4-dichloropyrimidine. To improve the precision of the estimated parameters, we demonstrate the use of the automated
platform first in optimization of the yield of the less kinetically favorable 2-substituted product. Then, upon isolation of the
intermediates, we use the automated system with maximum a posteriori estimation to minimize uncertainties in the network
parameters. From considering the steps of the reaction network in isolation, the kinetic parameter uncertainties are reduced by
50%, with less than 5 g of the dichloropyrimidine substrate consumed over all experiments. We conclude that isolating pathways
in the multistep reaction network is important to minimizing uncertainty for low sensitivity rate parameters.

■ INTRODUCTION

A primary concern in pharmaceutical process chemistry is scale-
up of a reaction from bench to production levels. Commonly,
conditions found to be optimal at bench scale end up
nonoptimal at a larger scale, due to changes in mass- and
heat-transfer properties between reactor volumes. These
changes in transport properties can lead to the formation of
byproducts at the larger scale that were not accounted for in the
preliminary optimization. In contrast to small-scale optimiza-
tion followed by scale-up, it is traditionally preferred to model
and parametrize a synthesis in terms of its kinetics at the small
scale. The reaction kinetics are then coupled with knowledge of
the effects of heat- and mass-transfer in the larger-scale reactor
in order to optimize the reaction.
Continuous-flow microreactor systems have attracted much

attention in the pharmaceutical industry as tools for reaction
development and scale-up.1−4 Small-scale continuous systems
offer the potential for gathering significant reaction information
from minimal amounts of starting material, in comparison to
batch reaction development. The accelerated heat and mass
transfer rates in microreactor systems further enhance the
likelihood that intrinsic reaction information, such as kinetics,
can be obtained and directly applied to scale-up.5−8

Contributing to the efficiency of reaction characterization in
flow is the ability to integrate online process analytics and
feedback control into the continuous system.9 Online analysis
coupled with a central computer enables the potential for fully
automated systems which employ smart algorithms to optimally
evaluate reaction conditions and model parameters while
minimizing the consumption of valuable starting materials.
Previously, we have demonstrated the application of

automated, continuous-flow microreactor systems for the

purposes of reaction screening,10 optimization,11,12 kinetic
model discrimination, and kinetic parameter estimation.13

Such systems offered the advantages of precise control of
reaction conditions while minimizing both reagent consump-
tion and user intervention. A challenge still to be considered in
all of these cases is the extraction of reaction kinetic
information from more complex reaction networksthose
which proceed in either series or parallel and have the potential
to form one or more unwanted byproducts. In this paper, we
demonstrate an automated, continuous-flow system capable of
both accurately estimating kinetic parameters for a series−
parallel reaction network and optimizing the yield of a desired
monosubstituted product. As is often the case in complex
networks, however, we find that the kinetic parameters
estimated by the automated system include a high degree of
uncertaintyas great as 20% for some parameterswhich has
not arisen in automated studies of more simplified reaction
networks.13 To ensure scalability of our final results, we apply
the same automated system to determining the kinetics of
isolated steps in the reaction network, greatly reducing
parameter uncertainties to more acceptable values of less than
4%. This yields precise kinetic estimates for all steps in the
reaction pathway, including those which account for only a
small amount of byproduct formation.
The model reaction network studied is the nucleophilic

aromatic substitution (SNAr) reaction of 2,4-dichloropyrimidine
(1) and morpholine (2) in ethanol to form a desired 2-
substituted aminopyrimidine (4) and the less-desired 4-
substituted (3) and 2,4-substituted (5) byproducts. The

Received: July 9, 2012
Published: September 20, 2012

Article

pubs.acs.org/OPRD

© 2012 American Chemical Society 1770 dx.doi.org/10.1021/op3001838 | Org. Process Res. Dev. 2012, 16, 1770−1782



reaction network is shown in Scheme 1. As inhibitors of
kinases, such as Cdks, p38, Aurora, KDR, and Gsk3, 2- and 4-
substituted aminopyrimidines have generated considerable
pharmaceutical interest.14−17 The observed inhibitory effect
has been attributed to hydrogen-bonding interactions between
the 1-nitrogen and the 2-amino group on the pyrimidine
molecule and the hinge amino acid of the kinase.18 Synthesis of
2-aminopyrimidines is complicated by the preference of the
amine nucleophile to substitute at the 4-carbon position of the
substrate.19 More aggressive reaction conditions are generally
required in order to promote the second nucleophilic
substitution and thereby generate the 2-amino derivative.20,21

Using a silicon microreactor for this synthesis, we are able to
safely pressurize the flow system and carry out the reaction
above the atmospheric boiling point of the solventa
traditional limitation of batch experimentation. The rapid
heat-transfer rate of silicon additionally improves the likelihood
of obtaining intrinsic reaction kinetics during experimentation
without being limited by reaction exothermicity.

■ METHOD
A procedure for achieving optimal experimental design in a
single-step Diels−Alder reaction has been described previously
by McMullen and Jensen.13 The procedure is iterative and can
be illustrated schematically in Figure 1. Experimentation begins
with an initial factorial design. On the basis of data collected
through online analysis, a regression-fitting algorithm optimizes
the values of parameters specified in a user-defined model in

order to best agree with experimental data. Sensitivity
coefficients are then calculated on the basis of the optimal
parameter estimates for the experiments performed and for
each candidate posterior experiment to be tested for optimality.
The sensitivity coefficients are stored in the Fischer information
matrix, the determinant of which gives the objective function to
be minimized in the selection of a D-optimal posterior
experiment. The optimal experiment is subsequently identified,
and the prior experimental data are augmented by the results of
the D-optimal posterior experiment. This procedure iterates
until the system is terminated by a user.

Kinetic Model. We assumed for our kinetic model that all
four reactions in Scheme 1 followed second-order, bimolecular
reaction kinetics and that the reaction system could be modeled
as an ideal plug flow reactor (PFR). The assumption of second-
order, bimolecular reaction kinetics agrees with the mechanisms
previously established in the literature for SNAr reactions.

22−24

For 400-μm reactor channels and liquid-phase species
diffusivities ≥1 × 10−9 m2 s−1, a flow reactor can be modeled
as an ideal plug flow reactor for residence times exceeding 2
min. Only small deviations from plug flow are expected for
shorter reactor residence times extending down to 30 s.25,26 We
chose the minimum reaction time for our experiments to be 30
s so as not to have to deconvolute the effect of dispersion in our
online kinetic analysis.
Considering our assumptions for the kinetics of the reactions

in Scheme 1, we derived the following rate laws governing
species generation and consumption:
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The model-predicted response of species i was specified in eqs
1−5 as (Ĉu)i, the predicted concentration of i in experiment u

Scheme 1. Multistep reaction network for conversion of 2,4-dichloropyrimidine to 4,4′-(2,4-pyrimidinediyl)bis-morpholine

Figure 1. Logic flow diagram for automated kinetic parameter
estimation in continuous flow.
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as a function of the reaction time t, the reaction temperature T,
and the initial concentrations of 1 and 2, C10 and C20,
respectively. km was the rate constant for reaction m, expressed
as:

= − =⎜ ⎟⎛
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E
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mexp 1, ..., 4m m
Am

(6)

where Am and EAm were the pre-exponential factor and
activation energy associated with km, respectively, and R was
the gas constant. To achieve better convergence to an optimal
set of kinetic parameters, we defined scaled parameters θj such
that:
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Equation 6 was then rewritten as:
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where the pre-exponential factor and the activation energy were
scaled comparably. We chose for our case T* = 343 K to
represent an average value for the reaction temperature in our
experiments, ensuring that T*/T ∼ 1 over the range of reaction
temperatures studied.
Approach to Parameter Estimation. The concentrations

of species 1, 3, 4, and 5 were measured after reaction by online
HPLC. An optimal set of kinetic parameters was obtained by
fitting the kinetic model of eqs 1−5 to the observed responses
of 1, 3, 4, and 5 as functions of T, C10, C20, and the residence
time tres. Both maximum likelihood estimation (MLE) and
maximum a posteriori (MAP) estimation were applied in
obtaining optimal least-squares regression estimates of the
kinetic parameters.
For experiments in which no prior estimates for optimal

kinetic parameters were available, a set of optimal kinetic
parameters was found by MLE. The nonlinear programming for
MLE was formulated as:
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where Cu was the Nresp × 1 vector of measured responses for
experiment u and Ĉu(θ) was the Nresp × 1 vector of model-
predicted responses for experiment u with model parameters θ.
Wu was a weighting matrix for the residuals which we chose to
be

= =ε
−W V u N1, ...,u

1
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Vε was the response covariance matrix, defined for species i and
species j as:27

∑= =
− ̂ ′ − ̂

−ε
=

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
V s

C C C C

N N
( )

( ) ( ) ( ) ( )
ij ij

u

N
u i u i u j u j2

1 expt param

expt

(12)

where the difference in the number of experiments and the
number of optimized parameters, Nexpt − Nparam, was strictly
greater than zero. Because the objective function required Vε as
an input, we used Vε from the previous experiment as an input
to the updated MLE optimization. Vε was initialized as the
identity matrix prior to the first parameter optimization and was

found experimentally to converge to a consistent set of values
after only 1−2 posterior experiments. The optimization in eq
10 was performed as a constrained sequential quadratic
programming (SQP) optimization in MATLAB. The lower
and upper bounds on the optimization were found by
computing the 98% confidence intervals on the prior optimal
parameters. In order to limit online computational time, a
maximum of 500 SQP iterations was allowed for the
optimization.
Uncertainties in parameter values were evaluated on the basis

of the parameter covariance matrix Vθ following the treatment
of Beck and Arnold.27 To calculate Vθ, we first defined the
sensitivity coefficient, (Xu)ip, for response i with respect to
parameter θp in experiment u:
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Here θopt denoted the optimal set of MLE or MAP parameters
found by SQP. Given the kinetic rate laws f i in eqs 1−5, we
were able to analytically evaluate eq 13 in the form of an
ordinary differential equation:28
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From the matrix of sensitivity coefficients, we calculated the
Fisher information matrix, Z, which equaled the inverse of the
parameter covariance matrix for the case of MLE:
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Estimation of the parameter covariance matrix allowed for the
uncertainties of our kinetic parameter estimates to be
calculated. For a single parameter θp, a one-dimensional
confidence interval was calculated from the expression:29
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where tα/2,ν=Nexpt−Nparam
was the Student’s t-distribution value for

α/2 confidence, and Nexpt − Nparam, the degrees of freedom.
The approach to MAP estimation was similar to the

approach for MLE, although MAP estimation considered a
priori estimates and uncertainties for the vector of model
parameters θ. The quadratic program for MAP estimation was
given as:
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where μ was the a priori vector of optimal model parameters
and Vμ

−1 was a weighting matrix for the difference between the
prior model parameters and the optimal a posteriori model
parameters. Vμ was identified as the a priori parameter
covariance matrix, which could be calculated as in eqs 15 and
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16 for all prior experiments. The a posteriori parameter
covariance matrix was then given by:

= +μ θ
− − −V V VMAP

1 1 1
(19)

and was substituted into eq 17 for Vθ
−1 in order to obtain

posterior confidence intervals. The number of degrees of
freedom in this case was Nprior + Nexpt − Nparam, where Nprior was
the number of prior experiments already conducted. As in
MLE, the MAP optimization was evaluated in MATLAB with
the constrained SQP optimization algorithm and limited to a
maximum of 500 iterations.
Approach to Optimal Experimental Design. Our

objective in parameter estimation was to minimize the total
uncertainty and joint uncertainty in the MLE and MAP optimal
parameters. Experiments were selected on the basis of the D-
optimality criterion, introduced by Box and co-workers:30,31
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The D-optimal corresponded to the choice of conditions for
the next experiment in the design of experiments for which the
predicted volume of the parameter covariance matrix was
minimized. By minimizing the volume of the parameter
covariance matrix, the total joint uncertainty among all
parameters in the model was minimized. For MLE, we
incorporated eq 20 as written into the parameter estimation
program. For MAP estimation, we substituted VMAP for Vθ as
was done for estimation of parameter confidence intervals.
Automated Parameter Estimation System. A diagram

of the automated parameter estimation system is shown in
Figure 2. A 0.30 M solution of 1 (98%, Aldrich, St. Louis, MO,
U.S.A.) was delivered with an internal standard, 1,2-
dimethoxybenzene (>99%, TCI, Portland, OR, U.S.A.) in
ethanol to a silicon microreactor. A solution of 0.92 M 2

(≥99.0%, Sigma-Aldrich, St. Louis, MO, U.S.A.) and 0.92 M
triethylamine (Et3N) (≥99.0%, TCI, Portland, OR, U.S.A.) in
ethanol was delivered to a T-mixer, diluted with ethanol, and
delivered to the second inlet port of the microreactor. The
reaction product was quenched in the quenching zone of the
microreactor by a 1.6 M solution of trifluoroacetic acid (99%,
Sigma-Aldrich, St. Louis, MO, U.S.A.) in ethanol. This
quenched product was then further diluted to a 3:5 ratio in a
micromixer by a second stream of ethanol and injected into an
HPLC for online analysis. In a separate set of experiments,
solutions of 3 and 4 were each reacted with a solution of 0.36
M 2 and 0.36 M triethylamine (Et3N) to produce 5. In the case
of using 3 or 4 as a starting material, a 0.16 M solution of 3
dissolved with the internal standard in ethanol or a 0.08 M
solution of 4 dissolved with the internal standard in ethanol,
respectively, was substituted into the system in place of 1.
Further information regarding system design and constraints,
microreactor fabrication, and online analysis can be found in
the Experimental Section.

Experimental Design. The design of experiments
proceeded in three stages: an initial set of experiments aimed
at determining the eight parameters in eqs 1−6 simultaneously;
a second set of experiments aimed at parametrizing each step of
the reaction pathway in isolation; and a final set of experiments
aimed at determining the eight kinetic parameters simulta-
neously using a priori estimates from the prior sets of
experiments. Up to four factors were manipulated for each
experiment: the reaction residence time (tres), the reaction
temperature (T), the initial substrate concentration (Ci0), and
the equivalents of 2 fed to the reactor. Each set of experiments
began with an initial factorial design, which characterized the
effect of manipulating multiple factors upon product yield. The
factorial designs have been summarized in Table 1 and are
discussed in greater detail in the Supporting Information.
Following the initial factorial design, experiments were chosen

Figure 2. Diagram of the automated continuous-flow parameter estimation system.

Table 1. Experimental conditions for factorial designs

set of experiments factorial design levels of tres (min) levels of T (°C) levels of equiv 2 substrate conc (M)

initial simultaneous parameter estimation 3 × 2 × 2 0.5, 1.0, 5.0 40, 80 1.0, 2.0 0.150
isolated estimation of A1, EA1, A2, and EA2 2 × 2 × 2 0.5, 1.0 40, 100 1.0, 2.0 0.150
isolated estimation of A3 and EA3 2 × 2 × 1 10, 20 80, 100 2.5 0.050
isolated estimation of A4 and EA4 2 × 2 × 1 10, 20 80, 100 2.5 0.030
final simultaneous parameter estimation 3 × 2 × 2 0.5, 10, 20 40, 100 1.0, 2.5 0.150
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sequentially from the solution of eq 20 over 1600 candidate
experimental points found from enumeration of the following:

∈
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A complete list of experimental conditions tested for each
experiment can be found in the Supporting Information.

■ RESULTS
Simultaneous Estimation of All Kinetic Parameters.

Table 2 lists the best-fit parameter estimates found by MLE at
the conclusion of the initial simultaneous parameter estimation
factorial design. Along with each parameter estimate, the
calculated uncertainty is presented as ±1 standard deviation.
While estimates on the parameters relating to k1 and k2 show
reasonable precision, the infinite uncertainties in the parameters
for k3 and k4 imply that very little information on these

Table 2. Optimal kinetic parameter estimates and uncertaintiesa from simultaneous estimation approach

number of experiments log10(A1) EA1 log10(A2) EA2 log10(A3) EA3 log10(A4) EA4

initial 0.0 14.2 0.0 14.2 0.0 14.2 0.0 14.2
12 3.4 ± 0.6 26.6 ± 3.2 3.3 ± 0.6 31.0 ± 3.8 −6 ± Infb 52 ± Infb −2 ± Infb 27 ± Infb

13 3.3 ± 0.5 26.4 ± 2.7 3.3 ± 0.5 31.1 ± 2.9 11 ± 6 102 ± 43 11 ± 29 100 ± 210
14 3.2 ± 0.4 25.5 ± 2.5 3.1 ± 0.4 30.1 ± 2.8 6.2 ± 1.2 67.9 ± 8.4 3.0 ± 3.0 44 ± 22
15 3.3 ± 0.4 26.2 ± 2.4 3.2 ± 0.4 30.8 ± 2.6 6.2 ± 1.1 68.3 ± 8.2 2.1 ± 2.1 37 ± 15
16 3.3 ± 0.4 26.1 ± 2.2 3.2 ± 0.4 30.7 ± 2.4 5.8 ± 0.8 65.4 ± 5.8 2.5 ± 1.7 40 ± 12
17 3.3 ± 0.4 26.1 ± 2.1 3.2 ± 0.4 30.6 ± 2.3 5.8 ± 0.8 65.5 ± 5.5 2.4 ± 1.5 39 ± 10
18 3.3 ± 0.3 26.3 ± 1.7 3.3 ± 0.3 31.1 ± 1.9 5.9 ± 0.7 66.5 ± 5.5 2.3 ± 1.4 38.5 ± 9.6
19 3.3 ± 0.3 26.2 ± 1.6 3.2 ± 0.3 30.8 ± 1.8 6.0 ± 0.7 67.2 ± 4.9 1.8 ± 1.0 35.1 ± 6.9
20 3.3 ± 0.3 26.4 ± 1.7 3.3 ± 0.3 31.2 ± 1.9 5.8 ± 0.7 65.1 ± 5.0 2.4 ± 1.0 39.2 ± 7.0
21 3.3 ± 0.3 26.3 ± 1.7 3.3 ± 0.3 31.1 ± 1.9 5.8 ± 0.6 65.8 ± 4.0 2.4 ± 0.9 39.1 ± 6.1
22 3.3 ± 0.3 26.2 ± 1.7 3.3 ± 0.3 31.0 ± 1.9 6.0 ± 0.6 66.7 ± 4.0 2.2 ± 0.8 37.4 ± 5.8
23 3.3 ± 0.2 26.5 ± 1.5 3.3 ± 0.3 31.4 ± 1.7 6.1 ± 0.6 67.4 ± 3.9 2.1 ± 0.7 36.8 ± 5.3
24 3.3 ± 0.2 26.5 ± 1.5 3.3 ± 0.2 31.4 ± 1.6 6.2 ± 0.6 68.3 ± 4.1 2.0 ± 0.8 36.0 ± 5.3

aUncertainties given as ±1 standard deviation. Am is in M−1 s−1 and EAm is in kJ mol−1. bInf denotes an undefined uncertainty.

Figure 3. (a−d). Experimental and model-predicted reactant and product concentration profiles after initial factorial design (12 automated
experiments). Markers identify experimental data points. Lines indicate model prediction.
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parameters has been gathered from the results of the initial
experimental design. Figure 3a−d shows the fit of the factorial
design data by the initial rate parameter estimates. That the fit
passes visual inspection is a testament more to the accuracy of
temperature and residence time control in the microreactor
system than it is to the choice of kinetic parameters. As the
standard errors in Table 2 indicate, an extensive range of
parameters could have been found for k3 and k4 which would
have acceptably fit the data shown in Figure 3.
In order to minimize the uncertainty in the parameter

estimates, the automated system selected the next D-optimal
experiment to be performed at the maximum allowable
residence time, temperature, concentration of 1, and equiv-
alents of 2. After the collection of this data point, parameter
estimates were again calculated, this time using the parameter
estimates and upper and lower bounds reported in Table 2 as
inputs. Vε was also updated to agree with the covariance of the
measured concentrations of the starting material and three
products after the first 12 experiments. As Table 2 shows,
significant improvements in the confidence of the estimates for
all eight parameters were achieved after completing this first D-
optimal experiment. In particular, uncertainties in the estimates
of the pre-exponential factors and activation energies pertaining
to k3 and k4 were all quantifiable, albeit reflective of greater than
50% error in the optimal parameter estimates.
The procedure for selecting and performing D-optimal

experiments was repeated in an automated manner a total of 12
times (giving 24 experiments in total) before a user-specified
termination. After each experiment, the initial guess for the
parameter values, the bounds on the parameter values, and Vε

were updated to agree with the results of the previous

parameter estimation. It is notable from Table 2 that the
uncertainties in parameter estimates improve greatly after
experiments 13−18, but that the uncertainties improve only
modestly from experiments 19−24. The optimal parameter
values also changed little for all four rate constants from
experiment 18 onward. Reasoning that further experimentation
would only lead to modest improvements in parameter
estimates and confidence intervals, we chose to terminate the
method after experiment 24 and pursue a different approach to
minimizing parameter uncertainty.
Figure 4a−d illustrates the agreement between the final best-

fit model parameters and experimental data after 24 experi-
ments. The model-fit and experimental data agree well across
the range of temperatures tested and at short residence times.
At long residence times, the model accurately fits the yield of 5;
however, the conversion of 1 is overestimated, and the yields of
3 and 4 are underestimated. We believe this to be a
consequence of the peak resolution between 1 and 3 as
measured by HPLC. A high conversion generally resulted in a
strong signal for 3 which, by broadening, overlapped the weak
signal of 1 and reduced the accuracy of detecting and
quantifying 1 at low concentrations. This claim is supported
by the observation that at conditions of high conversion
(temperatures at or above 80 °C, excess initial concentrations
of morpholine and Et3N), the measured conversion of 1
reproducibly reaches a maximum of 96−97% regardless of
residence time. Providing that the SNAr reaction is irreversible,
it is most likely that this replicated error results from the
repeated bias introduced in detecting the weak signal of 1 in
close proximity to the strong 3 signal by HPLC.

Figure 4. (a−d). Experimental and model-predicted reactant and product concentration profiles after 24 automated experiments. Markers identify
experimental data points. Lines indicate model prediction.
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Estimation of Kinetic Parameters from Isolated
Reactions. We proposed that parameter uncertainty could
be reduced by decomposing the reactions in Scheme 1 into a
sequence of isolated reactions. These isolated reaction steps are
presented in Schemes 2, 3, and 4. The approach of isolating

reaction steps is not uncommon to kinetic parameter
estimation and may be beneficial in cases where the path
through intermediates taken by the starting materials to reach
the final product is unknown or ambiguous. In the case of the
synthesis of 5, we hypothesized that the large parameter
uncertainties observed when attempting to estimate all eight
kinetic parameters simultaneously implied an ambiguity in
being able to identify whether the route from 1 to 5 went
predominantly through the intermediate 3 or the intermediate
4.
We sought first to optimize kinetic parameter estimates

corresponding to k1 and k2 in Scheme 2. The optimization
comprised a factorial design followed by four D-optimal
experiments. MAP estimation was employed for parameter
estimation, with k3 and k4 constrained to their prior optimal
values. Table 3 demonstrates that the approach of only

estimating the first four kinetic parameters resulted in rapid
convergence of the parameter values and substantial reductions
in uncertainties. Although the optimal kinetic parameters
presented in Table 3 shifted modestly from their prior MLE
values, it is important to note that the posterior optimal values
in all four cases are within the prior, one standard deviation
confidence intervals for each parameter found by the
simultaneous parameter estimation approach. This observation
would suggest that the posterior estimates of the four kinetic
parameters are consistent with the results of the simultaneous
parameter estimation experiment, although the posterior results
have increased the likelihood that the optimal kinetic
parameters are within closer proximity to the true parameter
values.
A challenge often presented in complex reaction networks is

the isolation of intermediate products, such as 3 and 4 in
Scheme 1. We have already introduced the importance of
selecting for 2-substituted pyrimidines as kinase inhibitors. In
our kinetic investigation, it was similarly important to optimize
for the synthesis of both the 2-substituted and the 4-substituted
pyrimidines in order to isolate starting materials for the
estimation of parameters in Schemes 3 and 4. Because 4 was
known to be produced less favorably than 3, we designed a
synthesis which would maximize the yield of 4 at the maximum
initial concentrations of 1 and 2:
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It can be derived from the proposed kinetic model that C10
affects the absolute concentrations of 1, 3, 4, and 5 in the
reaction but not the final product yields and selectivities. It
followed that a greater initial concentration of 1 would allow for
shorter reaction times with no adverse effect on the yield of 4.
We also found that a ridge of solution values exists for the yield
optimization when C20 and tres are allowed to vary
independently. Figure 5a illustrates this ridge of optimal
solutions at a temperature contour of 100 °C, where the
maximum yield is 17.1%. We reasoned from this ridge of
optimality that an optimum yield of 4 could be obtained in a
minimum reaction time by specifying C20 at its upper bound of
0.375 M. Additionally, we required that our conversion of 1
exceed 99% to ensure that the starting material would not be
present to complicate the isolation of products 3 and 4.
The formulation in eq 22 generated a model-predicted

optimal yield of 4 at a residence time of 49 s and a temperature
of 100 °C. This optimum can be seen visually from the contour
plot shown in Figure 5b. To test the predictive capability of our

Scheme 2. Reaction of 2,4-dichloropyrimidine and morpholine

Scheme 3. Reaction of 4-(2-chloro-4-pyrimidinyl)-
morpholine and morpholine

Scheme 4. Reaction of 4-(4-chloro-2-pyrimidinyl)-
morpholine and morpholine

Table 3. Optimal kinetic parameter estimates and
uncertaintiesa from isolated estimation of parameters A1,
EA1, A2, and EA2

number of
experiments log10(A1) EA1 log10(A2) EA2

prior 3.3 ± 0.2 26.5 ± 1.5 3.3 ± 0.2 31.4 ± 1.6
8 3.3 ± 0.2 25.9 ± 0.8 3.3 ± 0.2 31.1 ± 0.9
9 3.3 ± 0.1 26.0 ± 0.7 3.3 ± 0.1 31.3 ± 0.7
10 3.4 ± 0.1 26.6 ± 0.8 3.4 ± 0.1 31.9 ± 0.8
11 3.4 ± 0.1 27.0 ± 0.8 3.5 ± 0.1 32.2 ± 0.8
12 3.4 ± 0.1 27.0 ± 0.7 3.5 ± 0.1 32.3 ± 0.7

aUncertainties given as ±1 standard deviation. Am is in M−1 s−1, and
EAm is in kJ mol−1. Constrained values for parameters were log10(A3/
M−1 s−1) = 6.2, EA3 = 68.3 kJ mol−1, log10(A4/M

−1 s−1) = 2.0, EA4 =
36.0 kJ mol−1.
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model, we reacted 0.745 g of 1 at the optimized reaction
conditions and analyzed reactant and product concentrations
by online HPLC. The experimental yields and conversion (in
mass units) based upon 0.745 g of 1 are compared in Table 4 to

the predicted yields and conversion for the optimal set of
experimental conditions. It was observed that our model
predictions for the yields of 4 and 5 were fairly accurate, but
that our model overestimated both the conversion of 1 and the
yield of 3. Following synthesis, 3 and 4 were each isolated by
column chromatography, with isolated yields reported in Table
4 in comparison to the model predictions and online HPLC
analysis. Isolated yields of both compounds from workup only
were between 84% and 85% and, consequently, the relative
selectivity of 3 to 4 was the same for the isolated yields as was
measured by online analysis.
Using the isolated product 3, we carried out the isolated

reaction in Scheme 3 to estimate the parameters for A3 and EA3.
Table 5 shows that a marked convergence of the parameter
confidence intervals for log10(A3) and EA3 was observed for the
isolated conversion of 3 and 2 to 5 and that the standard errors
on the estimates of the two parameters were reduced by more
than 50% in the eight experiments following the four-
experiment factorial design. By comparison, the final eight D-
optimal experiments in the simultaneous estimation experiment

yielded an improvement in the uncertainties of the estimates of
log10(A3) and EA3 of less than 30%. It was also observed that the
optimal parameter estimates for A3 and EA3 laid outside of the
2-standard deviation a priori confidence interval for the
individual parameter estimates. Though this would indicate
an inconsistency between the simultaneous and isolated
experimental data sets, we believe the reported results to be
acceptable on the basis of the path taken to the new set of
parameters, which remained within the 95% prior confidence
intervals for A3 and EA3 through the first eight experiments.
We next conducted the reaction of 4 with 2 (Scheme 4) for

the estimation of A4 and EA4. Table 5 shows the convergence of
the parameter estimates and single parameter confidence
intervals for log10(A4) and EA4 over the course of 12
experiments. Both parameter standard errors improved by
more than 67% from the a priori uncertainty values. The
optimal parameter estimates for A4 and EA4 were both found to
be within the a priori 2 standard deviation single-parameter
confidence intervals.
We sought upon completion of the isolated experiments to

reconcile our updated set of parameters and uncertainties in a
final set of MAP estimation experiments. Such experiments
were necessary to account for any interaction effects between
species in the reaction network and to correct for the
uncertainty introduced from using lower purity chemicals in

Figure 5. (a) Model-predicted yield of 4 with initial concentration C10 = 0.150 M and T = 100 °C based upon optimal model parameters for k1 and
k2 from Table 3 and for k3 and k4 from Table 2. The ridge of maximum yield is at 17.1%. (b) Model-predicted yield of 4 with initial concentrations
C10 = 0.150 M and C20 = 0.375 M based upon optimal model parameters for k1 and k2 from Table 3 and for k3 and k4 from Table 2. The maximum
predicted yield is 17.1% at tres = 49 s and T = 100 °C.

Table 4. Model-predicted, HPLC, and isolated yields for 1,
3, 4, and 5 for tres = 49 s, T = 100°C, C10 = 0.150 M, and C20
= 0.375 M. Predictions are on the basis of 0.745 g of 1
reacted

product
distribution

model-
predicteda

measured by
HPLC

isolated after
workup

output 1 (g) 0.001 0.028 −b

output 3 (g) 0.821 0.794 0.698
output 4 (g) 0.171 0.161 0.141
output 5 (g) 0.006 0.008 −b

% conversion 1 99.8 96.2 −b

mol/mol % yield 3 82.2 79.5 69.9
mol/mol % yield 4 17.1 16.1 14.1
mol/mol % yield 5 0.5 0.6 −b
aModel predictions were calculated using optimal model parameters
for k1 and k2 from Table 3 and for k3 and k4 from Table 2. bWorkup of
the product was not attempted.

Table 5. Optimal kinetic parameter estimates from isolated
estimation and uncertaintiesa of parameters A3 and EA3 and
parameters A4 and EA4

number of
experiments log10(A3) EA3 log10(A4) EA4

prior 6.2 ± 0.6 68.3 ± 4.1 2.0 ± 0.8 36.0 ± 5.3
4 6.2 ± 0.5 68.3 ± 3.7 2.1 ± 0.5 37.2 ± 3.1
5 6.0 ± 0.5 67.2 ± 3.5 2.2 ± 0.5 38.8 ± 3.2
6 5.8 ± 0.4 65.8 ± 2.9 2.7 ± 0.4 42.4 ± 2.5
7 5.6 ± 0.4 64.3 ± 2.9 2.7 ± 0.3 42.9 ± 2.3
8 5.3 ± 0.3 62.4 ± 2.4 2.9 ± 0.3 43.9 ± 1.9
9 5.1 ± 0.3 61.0 ± 2.3 2.8 ± 0.3 43.2 ± 2.2
10 4.9 ± 0.3 59.7 ± 1.8 2.8 ± 0.3 43.7 ± 1.9
11 4.7 ± 0.3 58.0 ± 1.9 2.8 ± 0.3 43.5 ± 1.8
12 4.8 ± 0.2 59.0 ± 1.7 3.0 ± 0.2 44.7 ± 1.7

aUncertainties given as ±1 standard deviation. A3 is in M
−1 s−1 and EA3

is in kJ mol−1.
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the isolated reactions of 3 and 4 with 2. Optimizing over the

same set of parameters but with the prior estimates and

uncertainties found from conducting the set of isolated

experiments, we were able to obtain rapid convergence of our

parameter estimates with uncertainties greatly reduced over the

initial simultaneous estimation approach. The convergence of

the parameter estimates from experiments 12−18 of the

culminating experiment are shown in Table 6. Optimal log/pre-

Table 6. Optimal kinetic parameter estimates and uncertaintiesa from final simultaneous experiments in isolated approach

number of experiments log10(A1) EA1 log10(A2) EA2 log10(A3) EA3 log10(A4) EA4

prior 3.4 ± 0.1 27.0 ± 0.7 3.5 ± 0.1 32.3 ± 0.7 4.8 ± 0.2 59.0 ± 1.7 3.0 ± 0.2 44.7 ± 1.7
12 3.5 ± 0.1 27.3 ± 0.7 3.5 ± 0.1 32.1 ± 0.7 5.0 ± 0.2 60.4 ± 1.7 3.2 ± 0.2 46.3 ± 1.8
13 3.5 ± 0.1 27.1 ± 0.7 3.5 ± 0.1 32.2 ± 0.6 4.8 ± 0.2 59.0 ± 1.7 3.0 ± 0.2 45.0 ± 1.7
14 3.4 ± 0.1 27.0 ± 0.6 3.5 ± 0.1 32.2 ± 0.6 4.8 ± 0.2 59.0 ± 1.7 3.0 ± 0.2 45.0 ± 1.8
15 3.4 ± 0.1 27.0 ± 0.6 3.5 ± 0.1 32.1 ± 0.6 4.8 ± 0.2 58.9 ± 1.7 3.0 ± 0.2 45.0 ± 1.8
16 3.4 ± 0.1 27.0 ± 0.6 3.5 ± 0.1 32.1 ± 0.6 4.8 ± 0.2 58.7 ± 1.7 3.0 ± 0.2 45.0 ± 1.8
17 3.4 ± 0.1 27.0 ± 0.6 3.5 ± 0.1 32.1 ± 0.6 4.9 ± 0.2 59.4 ± 1.6 3.0 ± 0.2 45.0 ± 1.8
18 3.4 ± 0.1 27.0 ± 0.6 3.5 ± 0.1 32.1 ± 0.6 4.9 ± 0.2 60.0 ± 1.6 3.0 ± 0.2 45.0 ± 1.7

aUncertainties given as ±1 standard deviation. Am is in M−1 s−1 and EAm is in kJ mol−1.

Figure 6. (a−f) Experimental and model-predicted reactant and product concentration profiles after completion of all experiments (including
simultaneous and isolated approaches). Markers identify experimental data points. Solid lines indicate model prediction.
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exponential terms were estimated to a standard deviation of
±0.1 M−1 s−1 for k1 and k2 and to ±0.2 M−1 s−1 for k3 and k4.
Likewise, standard errors for the activation energy terms were
estimated as ±0.6 kJ mol−1 for rate constants 1 and 2 and
±1.6−1.7 kJ mol−1 for rate constants 3 and 4. Figure 6a−f
compares the predicted concentration profiles on the basis of
the optimal model parameters in comparison to the data for all
experiments. The model-fit values appear to agree with the
experimental data.
In total, the procedure for first simultaneously estimating

kinetic parameters then isolating products and refining the
kinetic parameters in isolated experimentation required 78
automated experiments to complete (with 54 experiments
dedicated to estimating each kinetic parameter) and required 7
days of cumulative time. Less than 5 g of 1 were consumed for
all experiments and the synthesis and isolation of 3 and 4. A
more streamlined workup and isolation routine in the future
would reduce the experiment time further, as workup and stock
sample preparation were the only steps carried out manually.
The duration of the automated experiments was primarily
determined by the time required to reach steady state for the
longest residence time experiments and the rate of convergence
of the system, which was a function of both the sensitivity of
the experiments to the model parameters and the accuracy and
precision of the continuous flow method.

■ DISCUSSION
The complexity of many pharmaceutical syntheses dictates that
reactions be parametrized and optimized accurately and with
minimal uncertainty when scaled to a production level. A large
degree of uncertainty introduces the potential for inaccurate
reaction scale-up, leading to lesser yields and/or increased
formation of detrimental byproducts. In the initial simultaneous
parameter estimation experiments, we demonstrated an
automated approach that, albeit accurate, failed to reasonably
minimize parameter uncertainty. The results suggested that
although the model predictions in Figures 3 and 4 appeared
reasonable, there could be many parameters within an error of
as large as 20% yielding an acceptable fit of the experimental
data. Optimizing or predictably scaling-up a system while
considering these large uncertainties in kinetic parameters is
infeasible.
We hypothesized from our initial results that the large

uncertainties in the parameter estimates derived from the
correlation in the model parameters. (For a more in depth
discussion of the parameter correlation matrix describing the
reaction pathway, please see the Supporting Information.)
From examination of eqs 15 and 16, we identified two key
factors which we expected to contribute to the correlated
uncertainties between parameters. The first factor considered
was the calculated response covariance Vε, which indicates the
variability in both the experiment and in the measurement of
the data. As continuous flow systems are excellent in their
control of reaction conditions and residence time, we proposed
that the variability in the experimental setup was not the major
factor contributing to the large uncertainties. Alternatively, we
considered the large uncertainties to be primarily a result of low
parameter sensitivity across the range of experimental
conditions. To address this low sensitivity, we restructured
the parameter estimation so as to estimate the eight kinetic
parameters from the isolated reactions in Schemes 2−4. From
this restructuring, we were able to achieve significantly reduced
parameter uncertainties compared to those in the simultaneous

approach and confirm our notion that the originally high
uncertainties resulted from low parameter sensitivity.
We suspect that the remaining parameter uncertainty after

the set of posterior experiments is a combination of lower
sensitivity in discriminating between the activation energy and
the pre-exponential factor for each rate constant and of the
inherent error in the system, estimated as Vε. From the final
calculated Vε, the error in measuring 1 was found to be
±0.0064 M (±4.3% based on C10), with the errors in measuring
3, 4, and 5 calculating to ±0.0026 M, ±0.0019 M, and ±0.0011
M, respectively. These errors can be interpreted as the limiting
precision of the kinetic model, given uncertainties in flow rates,
starting material purity, temperature control, and online
analysis. To achieve this limiting precision, one would need
to improve the sensitivity of the model to each activation
energy and pre-exponential factor by conducting experiments at
more extreme temperatures or by incorporating quantum
calculated pre-exponential factors into the MAP estimation.
Although the parameter estimation improved substantially by

analyzing isolated reactions under conditions of greater
sensitivity, the method we have employed still relies upon
obtaining reasonable estimates of the rate parameters in the
simultaneous approach. By incorporating MAP estimation into
the method, we demonstrated that the information gained from
the simultaneous approach can be incorporated as a priori
information in the isolated reaction approach to provide initial
parameter estimates and to further reduce parameter
uncertainty. Additionally, the optimal parameters found in the
simultaneous experiment and for the isolated reaction in
Scheme 2 proved to be necessary in finding conditions at which
an optimal yield of 4 could be obtained.

■ CONCLUSIONS
The advancement of continuous flow technology with online
feedback has enabled the development of automated systems
capable of parametrizing and optimizing chemical syntheses
with little a priori reaction information. For appropriate
reactions and conditions, such automated systems have the
potential to minimize consumption of valuable reagents while
providing the requisite information for reaction scale-up.
Although these systems are quite interesting for demonstration
purposes, it is trivial to find cases in which the chemistry under
study is too complicated to be parametrized in a handful of flow
experiments. Here we have demonstrated an automated
platform and procedure that are both efficient in conserving
reagents and effective at parametrizing a complex reaction
network.
As automated flow systems such as the one in this study

continue to develop, further consideration will need to be
placed upon gaining additional knowledge within the reaction
system and upon designing systems with the intelligence to
diagnose, model, and parametrize reaction networks without
user-supplied models. To generate knowledge within the
reaction system, fast online measurement tools such as flow
IR will allow systems to monitor product formation near-
continuously to help diagnose when and how byproduct
formation occurs. The abilities to diagnose, model, and
parametrize reaction networks have all been demonstrated in
individual cases. As of yet, no automated system has been
constructed with the intelligence to propose a novel mechanism
from experimental data and to run the tests necessary to
validate and parametrize that mechanism. As shown in this
study, design of such a robust a priori system will be challenged
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by the automated system’s ability to experiment at conditions
of high parameter sensitivity, which often requires isolation of
reactions and reaction intermediates and operation at hard-to-
reach reaction conditions.

■ EXPERIMENTAL SECTION
System Configuration. Pumping of fluids through the

microreactor and micromixer system was accomplished with
the use of Harvard Apparatus PhD 2200 syringe pumps under
the control of LabVIEW v8.6. Manipulation of pump flow rates
allowed for a range of residence times and reactant
concentrations to be explored. Connections downstream of
the microreactor were made using 0.086 in. internal diameter
PFA tubing (Upchurch Scientific, Oak Harbor, WA) to
minimize dead volume. Check valves were installed on all
feed streams, and a 20 psi backpressure regulator was installed
downstream of the HPLC injection valve in order to dampen
flow oscillations and increase the boiling temperature of the
primary solvent, ethanol.
The silicon microreactor employed in this experiment was

fabricated following standard photolithography and deep
reactive ion etching techniques.6 The channel cross-sectional
dimensions were 500 μm (width) × 400 μm (height). A halo-
etched silicon-free region of the microreactor enabled temper-
ature control in two different zones of the reactor. At the
entrance of reactants to the reactor, a 20-μL mixing zone
allowed for mixing of both reactant streams at ambient
temperature. The 220-μL spiral reaction zone of the reactor
was then heated to a uniform temperature by a cartridge heater
controlled by an Omega temperature controller to ±0.4 °C.
The silicon micromixer design has been described previously32

and allows for rapid mixing or dilution in a 4.1-μL volume. Both
the microreactor and the micromixer were compression
packaged to enable continuous fluid transfer throughout the
system. The total volume of the system, including the
microreactor, micromixer, and transfer tubing downstream of
the microreactor was approximately 280 μL. To allow adequate
time for the system to reach a steady state after equilibration of
the reactor temperature, 1 mL of reactants was infused into the
system prior to online analysis. To allow sufficient time for the
syringe pumps to equilibrate, the system was additionally
required to run for a minimum of 3 min at the same
temperature and flow rates prior to online analysis.
On the basis of the system design, constraints were placed a

priori upon the experimental design space. Residence times
were constrained to within the range of accuracy for the syringe
pumps exerting force on 5-μL glass syringes dispensing through
the system under 20 psi backpressure. We estimated this range
to be from flow rates of approximately 1−250 μL min−1 for
each syringe pump. We reasoned the minimum temperature to
be that at which the rate of reaction in the mixing zone of the
microreactor (held at room temperature) was insignificant in
comparison to the reaction rate in the reaction zone. Under this
condition, the complications of the reaction mechanism in the
mixing zone could be excluded from the kinetic model. A
maximum temperature of 100 °C was specified so as not to
exceed the boiling point of the solvent, ethanol, in the presence
of 20 psi of backpressure. In future studies, a change to a
higher-boiling point solvent such as n-butanol would enable a
more extensive range of temperatures to be explored. The
initial concentration of 1 was limited by the solubility of 1 in
ethanol, and the range of equivalents of morpholine and Et3N
added was chosen to extend from 0.5 to 5. The number of

discretizations of the experimental space (1600) was chosen to
achieve an extensive range of internal points at which to
evaluate the D-optimality condition, while at the same time
limiting the time required online to exhaust all possible
combinations of the four input variables.
Analyte concentrations were measured online by HPLC.

Analysis by HPLC was advantageous in allowing for a
quantitative separation of reaction components and demon-
strated the potential for this method to be applied to more
complex reaction networks. Species were measured using a
Waters HPLC with 1525 binary pumps; a Nova-Pak C18 4 μm,
3.9 mm × 150 mm column; a 2996 PDA detector and
Empower software. A 2-μL volume of diluted reaction product
was automatically injected into the HPLC for analysis. A
gradient method of water and acetonitrile was employed in
order to separate 1, 3, 4, 5, and the internal standard. MATLAB
code was written to integrate peak areas and determine species
concentrations on the basis of previous calibrations with the
internal standard. Analysis was completed in 9.25 min, at which
point either reaction conditions were manipulated in
preparation for collecting the next experimental data point or
data were passed to the parameter estimation program in
MATLAB in order to identify the next D-optimal experiment to
conduct.

Synthesis and Isolation of Products. Products 3 and 4
were synthesized in the automated system described and are
shown in Figure 2. In ethanol for 49 s at 100 °C were reacted
0.150 M 1 (corresponding to 2.0 g starting material) and 2.5
equiv each of 2 and Et3N. The reaction product was quenched
online by TFA. An aqueous extraction was performed offline to
remove any salts formed from the quench of Et3N and TFA,
and the organic product was dried in Na2SO4. After filtration,
liquid solvents were removed under vacuum to yield a white,
crystalline product. This product was separated by dry loading
onto 50 g of silica gel and eluting with a 4:1 solution of hexane/
ethyl acetate to yield 4 in >95% purity and eluting with a 1:2
solution of hexane/ethyl acetate to yield 3 in >95% purity.
HPLC yields of compounds 3 and 4 were 79.5% and 16.1%,
respectively. Following workup, the isolated yield of 3 was
69.9%, and the isolated yield of 4 was 14.1%, based upon the
moles of 1 reacted. The isolated compound 3 was confirmed by
HPLC, IR, 1H and 13C NMR, and GC/MS. 4 was confirmed by
HPLC, IR, 1H NMR, and GC/MS. Although NMR and GC/
MS cannot be used to distinguish the structures of 3 and 4, we
inferred from literature19 that 3 was the compound produced in
the greatest quantity and the compound that gave greater
selectivity at low temperatures than at higher temperatures. 4
was also identified by HPLC as being notably less polar than 3,
which is consistent with the symmetric positioning of the
electron-donating nitrogen atoms in the structure of 4.
Product 5 was synthesized neat in batch in an effort to

achieve a high yield in a short period of time. Such an approach
was considered acceptable over a flow chemistry approach for
two primary reasons. First, as the proposed kinetic mechanism
suggested, the yield of 5 was maximized for arbitrarily high
species concentrations and infinitely long residence times. In a
case such as this, the precise control of reaction conditions
afforded by a regulated microreactor system was of minimal
benefit unless the reaction presented a concern for safety under
uncontrolled conditions. Second, as the production of 5 under
neat conditions progressed, a viscous slurry of reactants and
products developed which would have been difficult to
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transport in our flow system without risking unsafe pressure
accumulation and/or clogging of the microchannel.
Our batch synthesis of 5 began with 2.0 g of 1 reacted with 2

mL of morpholine and 3 mL of Et3N, and the reaction yielded
3.3 g of 5 at >99% purity after 48 h at room temperature. The
isolated product was confirmed by HPLC, IR, 1H and 13C
NMR, and GC/MS.
Automated Calibration of Analyzed Compounds. To

conserve materials and minimize the amount of manual work
invested in experimental preparation, HPLC calibration curves
for 1, 3, 4, and 5 in relation to the internal standard were
developed in an automated procedure. In the case of each
calibration, a sample of the isolated reactant or product was
dissolved with the internal standard into a 10-mL solution of
ethanol. Each solution was then set up to be delivered via
syringe pump to the micromixer, where it was to be diluted
with pure ethanol and injected online into the HPLC. The
automated system proceeded by manipulating flow rates of
both the analyte and ethanol streams so as to generate a
correlation between the HPLC absorbance signal of the
reactant or product and the absorbance of the internal standard
at various concentrations. We found this procedure to be
effective in eliminating the effect of flow rate oscillations in the
final calibration curves.

■ PRODUCT CHARACTERIZATION

4-(2-Chloro-4-pyrimidinyl)morpholine (3): 1H NMR-
(400 MHz, CDCl3) δ 8.08 (1 H, d, J = 6.0 Hz), 6.38 (1 H, d, J
= 6.0 Hz), 3.78 (4 H, t, J = 5.0 Hz), 3.65 (4 H, broad); 13C
NMR(100 MHz, CDCl3) δ 162.8, 159.7, 155.9, 101.3, 66.5,
44.6; IR νmax 2361, 1653, 1586, 1559, 1540, 1355, 1265, 1234,
1165, 1117, 979, 801 cm−1; GC/MS m/z 52.0, 79.0, 114.0,
142.0, 167.9, 199.0; HPLC elution time 275−280 s, λmeas = 328
nm.
4-(4-Chloro-2-pyrimidinyl)morpholine (4): 1H NMR-

(400 MHz, CDCl3) δ 8.27 (1 H, d, J = 5.5 Hz), 6.64 (1 H, d, J
= 5.0 Hz), 3.90−3.75 (8 H, m); IR νmax 2865, 2361, 2341, 1617,
1580, 1506, 1448, 1336, 1269, 1202, 1159, 1116, 983, 962, 780
cm−1; GC/MS m/z 51.9, 78.9, 113.9, 141.9, 167.9, 199.0;
HPLC elution time 405−410 s, λmeas = 284 nm.
4,4′-(2,4-Pyrimidinediyl)bis-morpholine (5): 1H NMR-

(300 MHz, CDCl3) δ 7.96 (1 H, d, J = 6.0 Hz), 5.86 (1 H, d, J
= 6.0 Hz), 3.80−3.70 (12 H, m), 3.54 (4 H, t, J = 5.0 Hz); 13C
NMR(75 MHz, CDCl3) δ 162.8, 161.8, 157.0, 93.3, 67.1, 66.8,
44.5, 44.3; IR νmax 2852, 2361, 2341, 1582, 1558, 1472, 1438,
1263, 1237, 1001 cm−1; GC/MS m/z 67.1, 106.9, 134.9, 161.9,
192.8, 218.9, 249.8; HPLC elution time 180−210 s, λmeas = 284
nm.
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■ NOMENCLATURE

Symbols
Am Pre-exponential factor for rate constant km
Ci0 Initial concentration of species i
Cu Measured concentration of species 1, 3, 4, and 5 in

experiment u
Ĉu Model-predicted concentration of species 1, 3, 4, and 5

in experiment u
EAm Activation energy for rate constant km
f i Rate of formation for species i
i Species index
j Species index
k Species index
km Rate constant for reaction m
m Reaction index
MAP Maximum a posteriori
MLE Maximum likelihood estimation
Nexpt Number of experiments
Nparam Number of parameters
Nprior Number of prior experiments
Nresp Number of measured responses
p Parameter index
R Gas constant (8.314 J/mol K)
SNAr Nucleophilic aromatic substitution
SQP Sequential quadratic programming
sE,Am Standard error in estimation of EAm
sij
2 Covariance of responses i and j

T Reaction temperature
T* Scaling temperature for parameter optimization
t Reaction time
tres Residence time
tα,ν Student’s t value for 1 − α confidence and ν degrees of

freedom
VMAP A posteriori parameter covariance matrix
Vε Response covariance matrix
Vθ Parameter covariance matrix for optimal parameters θ
Vμ A priori parameter covariance matrix
Wu Weighting matrix for experiment u in MLE
Xu Sensitivity coefficient matrix for experiment u
Z Fisher information matrix

Greek Symbols
α Confidence level
θopt Optimal vector of model parameters
θp Model parameter p
μ A priori optimal model parameters
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